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A SIGNAL PROCESSING SCHEME FOR REDUCING THE CAVITY
FPULLING FACTOR IN PASSIVE HYDROGEN MASERS
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ABSTRACT

A passive hydrogen maser operates so as to cause a signal

fraguency, fs, to satisfy a selected criterion. The frequency s
which satisfies the criterion depends on the cavity resonance
frequency, fc. The derivative of s with respect to fc for fo =
fs is called the PULLING FACTOR. Theoretically this facter can

be zero

signal voltage samples taken at several frequencies. :

INTRODUCTION
Consider the oscillator contrel servo for a passive hydrogen ﬂ
maser. A signal frequency fs is synthesized from the oscillator :

output frequency. The oscillator frequency is controlled so as N
to cause fs to equal Fo, the (perturbed) hydrogen transition A
fregquency. Fossible servo ceontrol criteria includes e

a. The
equally
spacing

b. The

€. The
mean of

fs equals zero, the frequency spacing being very much larger than V%
the hydrogen linewidth. .

with a computaticnal criterion making use of complex

difference in maser transfer magnitudes at frequencies
spaced above and below f% equals zero, the freguency
being less than the hydroegen linewidth.

maser transfer phase at frequency fs equals zero.

difference between the maser transter phase at fs and the
the phases at frequencies equally spaced above and below

The signal frequency s which satisfies the selected criterion

depends

on the value of the cavity resonant {frequency fc. The

derivative of fs with respect to fc, under serve contrel, is the ;

FULLING

Fulling
Section
the twe
pulling

FACTOR.

factors for criteria (a) and (h) above are derived in
11 of reference 1, and are substantially ditferent for
cases. For criterion (¢) it can be shown that the
factor is closely the ratio of the cavity and hydrogen

line Q@'s, also differing from criteria (a) and (bh). It appears
then that, at least in part, the pulling factor is a result of
the method used to cause fs5 to approximate the hydrogen
transition frequency.
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The pulling factors mentioned above were all derived using a . F
model of the steady state complex microwave field as a function :
of frequency given by Lesage, Audoin and Tetu in reference 1 A : !
(1979). Using the same model it is possible to devise a
criterion for which the derivative of fs with respect to fc is
zero when fc = fs. Unlike criteria (al,(b) and (c) above it
makes use of both magnitude and phase of transfer measurements at
fs and at frequencies equally spaced above and below fs,.

FROFOSED DEMONSTRATION HARDWARE

At the present time the proposed frequency error criterion has
not been demonstrated experimentally. 6&n experiment should
evaluate at least the following:
Cavity pulling characteristic ;
Freguency error noise due to receiver noise ‘ : :
Bias due to error estimation algorithm.

-

Figure 1 is a simplified block diagram for demonstration of the
signal processing scheme. Some functions suwch as digital/analeg
conversion and cavity tuning are not shown where needed. The
process, under computer control, includes the following steps:

switch the maser input signal (V1) to frequencies fa, s, ' ' .
and fb in sequence (FRERBUENCY SYNTHESIZER) -

e

measure complex voltage ratios at these frequencies H
(NETWORK ANALYZER) ;

acquire and filter complex samples (COMPUTER)

perform frequency error computations (COMPUTER) ) L

perform servo loop filter functions (COMPUTER)

correct oscillator frequency ervor (COMFUTER).

V1 MASER | V2 ISOLATOR | VS,
—> | ATTENUATOR | ——— | PHYSICS 3 AND ———
1] UNIT |2 AMPLIFIER
FREQUENCY |—> NE TWORK
SYNTHESIZER | ¢&— ANALYZER
f BAIN I ET4ASE
VOLTAGE
CONTROLLED COMPUTER
OSCILLATOR] ¢

FIGURE 1 CONCEPTUAL BLOCK DIAGRAM
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CAVITY RESONATOR INVERSE TRANSFER FUNMCTION

The steady~state complex transfer function of the passive maser
is the ratio of the voltages V2 and V1 defined in Figure 2. For
a high-@ single—-pole cavity resonator without atomic hydrogen the
function consists of a fraction with a constant numerator. The
denominator is unity plus an imaginary term vc which 1s a linear
function of freguency. For practical reasons Figure Z includes
an isolater and an amplifier whose output is V3. We consider
measurements of complex values of the ratio of V3 and V1.

In equation (1) the symbel He is introduced, which is the ideal
cavity transfer function denominator, Egquation (Z). In the
definition of vc (3) we see that the imaginary term is equal to
the twice the difference between the signal frequency and the
cavity resonant frequency divided by the cavity bandwidth.

The complex plot of Figure 2 shows the contour of Hco as freguency
is varied, with a particular value indicated by *. The
simplicity and linearity of Hc suggests the use of inverse
transfer functions for parameter estimation from measurement
data.

If we obtain an inverse transfer function from measured voltages
as V1 /7 V3 it will consist of Hc multiplied by a complex number
Ho which results from cavity insertion loss, variocus phase
shifts, and gaing and losses associated with the paths from the
measurement junctions to the maser . In the following

devel opment we assume that variation of Ho aver the band of
fregquencies of interest is negligible.

V1 INCIDENT VOLTAGE TO PORT 1 Vi

MASER V2 1SOLATOR V3
- |PHYSICS | —=3> AND —
V2 INCIDENT V0L TAGE FROM PORT 2 1] UNIT 2 AMPLIFIER
FOR THE IDEAL CAVITY WITHOUT ATOMIC HYDROGEN:
(1) V3 /7 V1l = 1/ Ho Hc
Ho COMPLEX CONSTANT TO ACCOUNT FOR CAVITY INSERTION LOSS,
AMPLLIFIER GARIN, VARIOUS PHASE LAGS
Hc CONTOUR —-=>
t 2) Hc =1 + 3 vc
I 1 + j vg ====1%
( 3 vc =2 (§ - fc) / Bc M
A
+ FREQUENCY, HERTZ G
Q 1
fc CAVITY RESONANT FREQUENCY REAL
Bc CAVITY HALF-FOWER BANDWIDTH
FIGURE 2 CAVITY RESONATOR INVERSE TRANSFER FUNCTION
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Although Ho is unknown in the practical measurement situation, it
is possible te find (estimate) its complex value and other
parameters from measurements of V1i/V3 at two freguencies whoge
difference is known. Let the twoe frequencies fa and fb be
equally spaced above and below a frequency fs as illustrated in
Figure 3. We will call the measured inverse transfer at these
frequencies HMa and Hb, respectively. The corresponding values of
He will be Heca and Heb, as in the table,

In equation (4) we take the mean of Ha and Hb, which is Ho times
the mean of Hca and Hcb, and find the product He Hos whete Hes is
the value of Hc at frequency f«, to be used later. From the
difference between Ha and Hb we can find Ho multiplied by an
imaginary constant, as in (8). We will use this expression later
to remove the angle rotation due to Ho from calculations.

Dividing (4) by (5) produces an estimate of Hes/( j 2 Fl / Be ).
The real part of this gucotient (4) is the difference between s
and the cavity resonance frequency fc, divided by F1 (known).
The imaginary part (7) is the cavity bandwidth divided by 2 Fl.
Multiplying (5) and (7) and + j gives the complex value for Ha,
as in (B). Hence two complex ratios suffice to characterize the
ideal cavity resonator and the measured path:

Ho the inverse complex gain of the'path including
the cavity insertion loss

Bc the cavity bandwidth ( fc divided by loaded @)

$s - fc  the cavity tuning error in Hertz, if fs is the
desired resonant frequency.

s SIGNAL FRERUENCY, VARIABLE == Fl==2><== Fi1==31

Fi SPACING FREGUENCY, CONSTANT ;b ;5 ;a f
| FREQUENCY I Vi /7 V3 | Hec i
: fa = fs + F1 : Ha = Ho Hca : Mca = 1§ + §j 2 (fs + F1 - §c) / Bc :
: fb = ¥s ~ F1 : Hb = Ho Hch : Hebh = 1 + j 2 (f5s — F1 — fc) /7 Bec :
( 4) (Ha + Hb)/2 = Ho (1 + j 2 (f5 — fc) / Bc ) = Ho Hcs

(S (Ha — Hb) /2 = Ho ¢(jJ 2 F1 / Bc)

( &) REAL ¢ (Ha + Hb)/(Ha — Hb) ) = (s - fc) / F1

« 7 IMAG ( (Ha + Hb)/(Ha — Hb) ) = | - Be / 2F1

( 8 { - jBc/ 2F1) (Ha — Hb) /7 2 = ' Heo

FIGURE 3 CAVITY SIDE-FREQUENCY TRANSFER RELATIONSHIPS
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MASER INVERSE TRANSFER FUNCTION

The passive maser transfer function with atemic hydrogen present
can be readily derived from steady-state microwave field
equations (35) through (38) from the paper of Lesage, Audoin, and
Tetu in the Proceedings of the 33rd Annual Symposium on Frequency
Control, 1979, pages 513 through 332 (reference 1). They assume
that the cavity mistuning is small, and that the difference
between the microwave frequency and the cavity resonant frequency
is & small fraction of the cavity bandwidth.

Equation (?) introduces the symbol Hm for the deneminator of the
maser transfer function, multiplied by Ho as before. Equatiocn
(10) gives the function Hm, consistent with the field equations
of reference 1, although different in appearance. The symbols
X, 5y, and T2 are used as defined in reference 1.

The denominatoer of the maser transfer function is the sum of the
terms presented above for the cavity transfer and a complex term
due to the hydrogen atoms. The hydregen contributien te the
inverse transfer function is propertional te the parameter <.
When equal to zero there is no hydregen contribution. When
greater than unity the maser will oscillate. Saturation,
tepresented by the facter 5, increases with microwave field
amplitude and decreases with absolute signal frequency difference
from the hydrogen transition frequency, Fo.

The complex portion of the hydrogen contribution to Hm has a
ratio of imaginary to real parts which is proportional to the
frequency difference f - Fo. If ¥ is the frequency of a signal
which is intended to equal Fo then the value of this ratio is
proportional to the frequency error. The preoportionality factor
can be calculated from prior knowledge of the transverse
relaxation time, T2. For control purpoeses it need not be known
precisely.

FOR THE PASSIVE MASER WITH ATOMIC HYDROGEN:

(9 VI /VYS =  Ho Hm WHERE:
(10) Hm =1+ Jve - (X /(1 +8) )/ C1+ 327 T2 (§ -Fo)> . . ﬂ
DERIVED FROM (35), (36) AND (37) OF REFERENCE 1, WHERE

¢ PARAMETER WHICH CHARACTERIZES OPERATING CONDITIONS
RELATIVE TO THRESHOLD OF OSCILLATION. (22), REF. 1

] SATURATION FACTOR OF THE ATOMIC TRANSITION (38), REF. 1
T2 TRANSVERSE RELAXATION TIME OF HYDROGEN ATOMS

Fo ATOMIC TRANSITION FREQUENCY

FIGURE 4 MASER INVERSE TRANSFER FUNCTION
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Figure 5 introduces the symbol Hh for the hydrogen contribution
te the inverse maser transfer Hm, and in (12) expresses it in
terms of variables ah and vh. The angle of Hh is a function only
of vh (14) which in turn is proportional to £ - Fo.

Let fs be the frequency that is to be ceontrolled to equal Fo, and

let vhs be the value of vh

at fs. Let Hms be the value of Hm and

Hhs the value of Hh at frequency fs.

Earlier Hca and Hcb were defined for the cavity without atomic
hydrogen. NMNow we wWill assume that fa and fb are sufficiently far

from Fo that the effect of
frequencies is negligible.
of Hca and Heb equals Hos,
the presence of the atomic

the hydrogen atomz on Hm at these

We showed in Figure 3 that the mean
which cannot be measured directly in
hydrogen.

If the computed value of Hcs is subtracted from the maser inverse
transter Hme the result is Hhs (15). The imaginary part of Hhs
divided by its real part gives vh (1&) which in turn is
proportional te the frequency etrtor fs - Fo, independent of the
value of Hcos which depends on the cavity tuning error fc - fs.

The complex plot of Figure 5 shows three points Hms, Hca, and Hcb
representing measured values, and Hcs representing a computed
value. The leocation of Hcs indicates a cavity tuning ercor —-0.1
times the cavity bandwidth ( Z{(fs - fc)/Be = 0.2 ). The line
from Hce to Hms is horizontal, hence zero imaginary part of

Hhs, indicating that fs = Feo in this exammple.

vc = 0.2 |
(11) Hm = Hc + Hh, WHERE 2 # Hca
1 s = Fo I
(12) Hh = = ah /7 (1 + j vh) M Hhs
A Hms #¢—————u Hce
(13 ah = ot/ (1 + 5) G I
- o] 1
(14) vh = 27r T2 (f ~ Fo) ) REAL ) * Heb

| -
AT FREQUENCY fs, Hm = Hms and Hh = Hhs BY DEFINITION

(15 Hhs = Hms —~ Hes = Hms = (Hca = Heb) 7 2
(14) - IMAG (Hhs) / REAL (Hhs) = vh = 297 T2 (s - Fo)

FIGURE 5 HYDROGEN CONTRIBUTION TO MASER INVERSE TRANSFER
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FREQUENCY ERROR COMPUTATION

The frequency error computation would consist of equations (15)
arnd (16) were it not for the angle of Ho, due to the phase
components of the paths which connect the measurement junctions
with the maser. For actual measurements the whole ploet of Figure
5 would be rotated counterclockwise through the angle of Ho.

Figure & shows relationships which permit computation of the
ratie of the real and imaginary components of Hhs from
measurements. In the table of Figure & we name the measured
inverse transfer ratios Hs, Ha, and Hb, each containing the
factor Ho. The expressions for Hms, Hca, and Hcb are also
included.

H1 defined in (17) corresponds te (15), but with the factor He
included. H2 in (18) is the complex value from (3) of Figure 3
with the sign of its imaginary part reversed. Multiplying H1 and
HZ ¢(19) then produces Hhs multiplied by two real numbers and
rotated through - 70/ 2. The real factors are 4 F1/ Bc and (Ho

CONJUGATE (He) ).

The value of vhs in terms of the components of Hhs is reproduced
in (20), and the eguivalent relationship in terms of components
of HZ is given in (21). The frequency error cemputation in the
presence of Ho consists of (17), (18), (19), and (21).

! FREQUENCY | Vi /7 V3 | H [
| | 1 H
{ fs { He = Ho Hms | Hms = Hcse — ah / (1 + j vhs) I
| | I |
{ fa = fs + F1 | Ha = Ho Hca | Hca =1 + jJ 2 (f8 + F1 - fc) / Bc |
1 | 1 ]
| fb = fs — F1 | Hb = Ho Hcb | Heb = 1 + § 2 (¢s ~ F1 — fc) 7/ Bc |
(17) HYI = Hs — (Ha + Hb)/2 = Ho Hms -~ Ho Hcs = Ho Hhs

(18) H2 = CONJUGATE (Ha - Hb) = CONJUGATE ¢ jJ (4 Fi1 /7 Bc) Ho)

It

(19) H3 H1 H2 = - j Hhs (4 Fl/Be) ( Ho CONJUGATE (He) )

(20) vhs = -~ IMAG (Hhs) / REAL (Hhs)
(21) 277 T2 (s - Fo) = . REAL (HX) / IMAG (H3)

FIGURE & SOLUTION FOR SIGNAL FREGQUENCY ERROR
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DISCUSSION

The signal processing scheme described hére for‘reducing the
cavity pulling factor of & passive maser appeatrs to offer
the following:

1. Reduction of errors due to uncompensated cavity
resonance varitions (temperature, etc.)

2. Reduction of errors due to receiver neise and
electronic system imperfections in the cavity servo

F. The possibility of operating with a temperature-stable
cavity without autotuning.

The method may alse be of use in monitoring the cavity drift
in large active masers without autotuning.

The method has apparent limitatiens. The ftrequency-error
computation is based on six measured real values (three complex
values) compared to three in the case of criterion (c), and two
in criterion {(a). Each of thase values includes a contribution
due te receiver noise. Neige analysis for an oscillator contrel
serve using this methed has not yet been accomplished. GSome
rough reasening indicates that the frequency-error noise density
will be greater than for criterion (c).

The moedel assumes a single-mode cavity resonator with ideal
transfer function symmetry. Sensitivity to unwanted cavity
modes, non—-ideal microwave circuits, and filters in the commen
signal path is not known. Additional circuit transter
function elements may be accoimodated by taking measurements

at additienal frequencies, but with the penalty of additional
noise.

The hydroeogen influence at the side frequencies fa and fb was
neglected in the derivations. The real patrt of this influence is
less than the square of 1/vh evaluated at the side frequency.

The absolute value of the imaginary part is less than 1/vh,
closely egual and opposite at the two frequencies. In the
absence of saturation these would cause no errors. At actual
operating levels they will cause higher order pulling, showing up
for sufficiently large cavity tuning error, vcs. The error ves =
0,2 in Figure 5 is for illustration but is undoubtedly far too
large for matisfactory accuracy of the assumption.

While it is not clear whether this error-detection scheme is
advantageous, the derivations imply that cavity pulling is not an
unaveidable perturbation of the atomic hydrogen emission but is a
tresult of the scheme used to approximate its freguency.
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